203 research outputs found

    A switch element in the autophagy E2 Atg3 mediates allosteric regulation across the lipidation cascade

    No full text
    Autophagy depends on the E2 enzyme, Atg3, functioning in a conserved E1-E2-E3 trienzyme cascade that catalyzes lipidation of Atg8-family ubiquitin-like proteins (UBLs). Molecular mechanisms underlying Atg8 lipidation remain poorly understood despite association of Atg3, the E1 Atg7, and the composite E3 Atg12-Atg5-Atg16 with pathologies including cancers, infections and neurodegeneration. Here, studying yeast enzymes, we report that an Atg3 element we term E123IR (E1, E2, and E3-interacting region) is an allosteric switch. NMR, biochemical, crystallographic and genetic data collectively indicate that in the absence of the enzymatic cascade, the Atg3(E123IR) makes intramolecular interactions restraining Atg3's catalytic loop, while E1 and E3 enzymes directly remove this brace to conformationally activate Atg3 and elicit Atg8 lipidation in vitro and in vivo. We propose that Atg3's E123IR protects the E2 similar to UBL thioester bond from wayward reactivity toward errant nucleophiles, while Atg8 lipidation cascade enzymes induce E2 active site remodeling through an unprecedented mechanism to drive autophagy

    WangLab at MEDIQA-Chat 2023: Clinical Note Generation from Doctor-Patient Conversations using Large Language Models

    Full text link
    This paper describes our submission to the MEDIQA-Chat 2023 shared task for automatic clinical note generation from doctor-patient conversations. We report results for two approaches: the first fine-tunes a pre-trained language model (PLM) on the shared task data, and the second uses few-shot in-context learning (ICL) with a large language model (LLM). Both achieve high performance as measured by automatic metrics (e.g. ROUGE, BERTScore) and ranked second and first, respectively, of all submissions to the shared task. Expert human scrutiny indicates that notes generated via the ICL-based approach with GPT-4 are preferred about as often as human-written notes, making it a promising path toward automated note generation from doctor-patient conversations.Comment: Camera-ready submission to ClinicalNLP @ ACL 202

    Bioinspired materials for underwater adhesion with pathways to switchability

    Get PDF
    Strong adherence to underwater or wet surfaces for applications like tissue adhesion and underwater robotics is a significant challenge. This is especially apparent when switchable adhesion is required that demands rapid attachment, high adhesive capacity, and easy release. Nature displays a spectrum of permanent to reversible attachment from organisms ranging from the mussel to the octopus, providing inspiration for underwater adhesion design that has yet to be fully leveraged in synthetic systems. Here, we review the challenges and opportunities for creating underwater adhesives with a pathway to switchability. We discuss key material, geometric, modeling, and design tools necessary to achieve underwater adhesion similar to the adhesion control demonstrated in nature. Through these interdisciplinary efforts, we envision that bioinspired adhesives can rise to or even surpass the extraordinary capabilities found in biological systems

    Fibromodulin Is Essential for Fetal-Type Scarless Cutaneous Wound Healing

    Get PDF
    In contrast to adult and late-gestation fetal skin wounds, which heal with scar, early-gestation fetal skin wounds display a remarkable capacity to heal scarlessly. Although the underlying mechanism of this transition from fetal-type scarless healing to adult-type healing with scar has been actively investigated for decades, in utero restoration of scarless healing in late-gestation fetal wounds has not been reported. In this study, using loss- and gain-of-function rodent fetal wound models, we identified that fibromodulin (Fm) is essential for fetal-type scarless wound healing. In particular, we found that loss of Fm can eliminate the ability of early-gestation fetal rodents to heal without scar. Meanwhile, administration of fibromodulin protein (FM) alone was capable of restoring scarless healing in late-gestation rat fetal wounds, which naturally heal with scar, as characterized by dermal appendage restoration and organized collagen architectures that were virtually indistinguishable from those in age-matched unwounded skin. High Fm levels correlated with decreased transforming growth factor (TGF)-Ξ²1 expression and scarless repair, while low Fm levels correlated with increased TGF-Ξ²1 expression and scar formation. This study represents the first successful in utero attempt to induce scarless repair in late-gestation fetal wounds by using a single protein, Fm, and highlights the crucial role that the FM–TGF-Ξ²1 nexus plays in fetal-type scarless skin repair. Β© 2016 American Society for Investigative Patholog

    Corrected score methods for estimating Bayesian networks with error-prone nodes

    Full text link
    Motivated by inferring cellular signaling networks using noisy flow cytometry data, we develop procedures to draw inference for Bayesian networks based on error-prone data. Two methods for inferring causal relationships between nodes in a network are proposed based on penalized estimation methods that account for measurement error and encourage sparsity. We discuss consistency of the proposed network estimators and develop an approach for selecting the tuning parameter in the penalized estimation methods. Empirical studies are carried out to compare the proposed methods and a naive method that ignores measurement error with applications to synthetic data and to single cell flow cytometry data

    CDKN2B Upregulation Prevents Teratoma Formation in Multipotent Fibromodulin-Reprogrammed Cells

    Get PDF
    Tumorigenicity is a well-documented risk to overcome for pluripotent or multipotent cell applications in regenerative medicine. To address the emerging demand for safe cell sources in tissue regeneration, we established a novel, protein-based reprogramming method that does not require genome integration or oncogene activation to yield multipotent fibromodulin (FMOD)-reprogrammed (FReP) cells from dermal fibroblasts. When compared with induced pluripotent stem cells (iPSCs), FReP cells exhibited a superior capability for bone and skeletal muscle regeneration with markedly less tumorigenic risk. Moreover, we showed that the decreased tumorigenicity of FReP cells was directly related to an upregulation of cyclin-dependent kinase inhibitor 2B (CDKN2B) expression during the FMOD reprogramming process. Indeed, sustained suppression of CDKN2B resulted in tumorigenic, pluripotent FReP cells that formed teratomas in vivo that were indistinguishable from iPSC-derived teratomas. These results highlight the pivotal role of CDKN2B in cell fate determination and tumorigenic regulation and reveal an alternative pluripotent/multipotent cell reprogramming strategy that solely uses FMOD protein. Β© 2019, American Society for Clinical Investigation

    Fibromodulin Reduces Scar Formation in Adult Cutaneous Wounds by Eliciting a Fetal-Like Phenotype

    Get PDF
    Blocking transforming growth factor (TGF)Ξ²1 signal transduction has been a central strategy for scar reduction; however, this approach appears to be minimally effective. Here, we show that fibromodulin (FMOD), a 59-kD small leucine-rich proteoglycan critical for normal collagen fibrillogenesis, significantly reduces scar formation while simultaneously increasing scar strength in both adult rodent models and porcine wounds, which simulate human cutaneous scar repair. Mechanistically, FMOD uncouples pro-migration/contraction cellular signals from pro-fibrotic signaling by selectively enhancing SMAD3-mediated signal transduction, while reducing AP-1-mediated TGFΞ²1 auto-induction and fibrotic extracellular matrix accumulation. Consequently, FMOD accelerates TGFΞ²1-responsive adult fibroblast migration, myofibroblast conversion, and function. Furthermore, our findings strongly indicate that, by delicately orchestrating TGFΞ²1 activities rather than indiscriminately blocking TGFΞ²1, FMOD elicits fetal-like cellular and molecular phenotypes in adult dermal fibroblasts in vitro and adult cutaneous wounds in vivo, which is a unique response of living system undescribed previously. Taken together, this study illuminates the signal modulating activities of FMOD beyond its structural support functions, and highlights the potential for FMOD-based therapies to be used in cutaneous wound repair. Β© The Author(s) 2017

    MicroRNAs can generate thresholds in target gene expression

    Get PDF
    MicroRNAs (miRNAs) are short, highly conserved noncoding RNA molecules that repress gene expression in a sequence-dependent manner. We performed single-cell measurements using quantitative fluorescence microscopy and flow cytometry to monitor a target gene's protein expression in the presence and absence of regulation by miRNA. We find that although the average level of repression is modest, in agreement with previous population-based measurements, the repression among individual cells varies dramatically. In particular, we show that regulation by miRNAs establishes a threshold level of target mRNA below which protein production is highly repressed. Near this threshold, protein expression responds sensitively to target mRNA input, consistent with a mathematical model of molecular titration. These results show that miRNAs can act both as a switch and as a fine-tuner of gene expression.National Institutes of Health (U.S.). Director's Pioneer Award (1DP1OD003936)National Cancer Institute (U.S.). Physical Sciences-Oncology Center (U54CA143874)United States. Public Health Service (Grant R01-CA133404)United States. Public Health Service (Grant R01-GM34277)National Cancer Institute (U.S.) (PO1-CA42063)National Cancer Institute (U.S.) Cancer Center Support (Grant P30-CA14051)Howard Hughes Medical Institute. Predoctoral FellowshipCleo and Paul Schimmel Foundation. FellowshipNatural Sciences and Engineering Research Council of Canada PGS Scholarshi

    Establishment of a New Cell Line from Lepidopteran Epidermis and Hormonal Regulation on the Genes

    Get PDF
    When an insect molts, old cuticle on the outside of the integument is shed by apolysis and a new cuticle is formed under the old one. This process is completed by the epidermal cells which are controlled by 20-hydroxyecdysone (20E) and juvenile hormone. To understand the molecular mechanisms of integument remolding and hormonal regulation on the gene expression, an epidermal cell line from the 5th instar larval integument of Helicoverpa armigera was established and named HaEpi. The cell line has been cultured continuously for 82 passages beginning on June 30, 2005 until now. Cell doubling time was 64 h. The chromosomes were granular and the chromosome mode was from 70 to 76. Collagenase I was used to detach the cells from the flask bottom. Non-self pathogen AcMNPV induced the cells to apoptosis. The cell line was proved to be an epidermal cell line based on its unique gene expression pattern. It responded to 20E and the non-steroidal ecdysone agonist RH-2485. Its gene expression could be knocked down using RNA interference. Various genes in the cell line were investigated based on their response to 20E. This new cell line represents a platform for investigating the 20E signaling transduction pathway, the immune response mechanism in lepidopteran epidermis and interactions of the genes

    A Latent Pro-survival Function for the Mir-290-295 Cluster in Mouse Embryonic Stem Cells

    Get PDF
    MicroRNAs (miRNAs) post-transcriptionally regulate the expression of thousands of distinct mRNAs. While some regulatory interactions help to maintain basal cellular functions, others are likely relevant in more specific settings, such as response to stress. Here we describe such a role for the mir-290-295 cluster, the dominant miRNA cluster in mouse embryonic stem cells (mESCs). Examination of a target list generated from bioinformatic prediction, as well as expression data following miRNA loss, revealed strong enrichment for apoptotic regulators, two of which we validated directly: Caspase 2, the most highly conserved mammalian caspase, and Ei24, a p53 transcriptional target. Consistent with these predictions, mESCs lacking miRNAs were more likely to initiate apoptosis following genotoxic exposure to gamma irradiation or doxorubicin. Knockdown of either candidate partially rescued this pro-apoptotic phenotype, as did transfection of members of the mir-290-295 cluster. These findings were recapitulated in a specific mir-290-295 deletion line, confirming that they reflect miRNA functions at physiological levels. In contrast to the basal regulatory roles previously identified, the pro-survival phenotype shown here may be most relevant to stressful gestations, where pro-oxidant metabolic states induce DNA damage. Similarly, this cluster may mediate chemotherapeutic resistance in a neoplastic context, making it a useful clinical target.National Institutes of Health (U.S.) (NIH grant RO1-GM34277)National Cancer Institute (U.S.) (NCI grant PO1-CA42063)National Cancer Institute (U.S.) (NCI Cancer Center Support (core) grant P30-CA14051
    • …
    corecore